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Abshacf A StaristieaI mechanical appmach for natal networks in which couplings are the 
slow dynamicd variables is considerrd. The couplings are assumed to be confined in a restricted 
subspace near the Hebb-mle stTucNre comsponding to quenched panems. We sNdy the sihlation 
when the couplings thermalize at a tempemlure different f” ulat of the spin degrees of heedom, 
which makes it possible to @eat the system in terms of the baditional replica approach with a 
iinite number of qticus.  The strumre of the model is such that the effedive evolution of the 
couplings tends to deepen the free energy minima corresponding to the learnt pa”. The 
phase diagram ob¶ained exhibits a subsrantid mcmse of the mrieval region. 

In this letter we consider the problem of training in neural networks from a purely statistical 
mechanical point of view. In traditional treatments of training one introduces some kind of 
dynamics in the system of synaptic couplings, and then after some finite synaptic evolution 
time one studies the capacity and others statistical properties of the neural network obtained. 
Here we are going to consider the situation corresponding to infinite evolution times, when 
statistical themlization in the subsystem of the couplings is assumed to take place. The 
dynamics in the system of the couplings is defined to be ‘slow’, such that for any (slowly 
changing in time) realization of the couplings the complete thermalization of the neural 
degrees of freedom is assumed to take place. As for the (thermally noised) synaptic evolution 
itself, it is supposed to be such that the couplings tend to deepen the free energy minima 
corresponding to the learnt quenched patterns. In contrast to the well known ‘unlearning’ 
training algorithm [l,  21, in which one hies to remove randomly chosen energy minima, the 
procedure considered here could be called the ‘relearning’ one. 

In its original formulation the ‘unlearning’ algorithm defines the discrete-time evolution 
of the spin-spin couplings Jij of the Hopfield neural network [3] in the form 

(1) 
where 6 is some (numerically) small negative parameter and {U;] is taken at random spin 
configurations corresponding to one of the energy minima at a given realization of the 
couplings Jij ( t ) .  The initial couplings Ji j ( f  = 0) are chosen according to the Hebb learning 
rule [4] 

Jij ( t  + 1) = J i j ( t )  +€U:$ 

The above modification of the couplings (with the chosen sign of e) effectively wash out 
many of the energy minima corresponding to the spurious states, and in the result (for not 

0305-4470/94R10821119.50 @ 1994 IOP Publishing Ltd L821 



U 2 2  Letter fo the Editor 

very long evolution times) one finds a substantial increase of the storage capacity. However, 
no analytic theory of this phenomenon exists up to now. 

Here we are going to consider the evolution of the coupling which, in a sense, is 
opposite to the ‘unlearning’ one. Taking E in (1) to be positive one finds that the couplings 
are evolving towards the minima of energy. In this case one could hope that if the 
thermodynamic spin state of the system appears to be close to a pattern, such a type of 
the synaptic evolution would make this state more stable. Indeed, it will be demonstrated 
below that in the resulting phase diagram the retrieval region increases as compared with 
the original Hopfield model. 

Consider the evolution dynamics (1) in a generalized form, namely, let us introduce a 
finite temperature in the spin system and besides let us add a finite thermal noise for the 
modifications of the Jijs at each iteration step 

or 

(the parameter c is absorbed into the timescale). Here T is the temperature of the spin 
system, the thermal average (. . ,)j(r).r and the free energy F [ J ( r ) ,  TI are defined for given 
values of the couplings Ji j ( t ) ,  and qij ( t )  is the thermal white noise: (qij(t)qk&‘)) = 
ZT’6(ij)&oS(r - 13, where T’ # T. Equation (4) defines the Langevin dynamics in the 
space of the spin couplings with the driving potential being the free energy F [ J ( r ) .  TI 
created by the thermally equilibrated spin system. 

In the usual dynamical formulation of the training problem it would be inevitable 
to consider it at some limited time-scale, otherwise the evolution of the couplings could 
eventually drive them far from the values corresponding to the learnt patterns. However, if 
we are going to study the problem from a purely thermodynamical point of view, the time 
must be infinite by definition. In this situation it would be natural to constrain the values 
of the couplings in the vicinity of the Hebb ones simply ‘by hand’ introducing a Gaussian 
potential 

where N is the total number of spins and the temperature T‘ is introduced here just for 
convenience. The parameter JO contmls the size of the space near the ‘Hebb point’ in the 
space of the couplings, and in this sense it could be considered as a distant analogue of the 
finite evolution time in the dynamical treatment of the problem. 

Therefore, the statistics of Jijs will be defined by the effective Hamiltonian 

where F [ J ]  is a free energy of spin system at fixed Jijs, 

1 
= --In( exp(-fiH[J,o])). 

fi  .¶=+I 
(7) 

We consider the spin system which is described by the usual king model Hamiltonian 

H- = - J i j q u j  . (8) 
i c j  
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According to the previous definitions the statistical mechanics of the problem under 
consideration can be studied by the method, which has been developed recently for partially 
annealed spin-glasses and neural networks [5], which makes it possible to use the traditional 
replica approach with finite 'number of replicas'. The Hopfield neural network systems with 
partially annealed stored patterns have also been studied in 161. 

According to (6HS) for the total partition function depending on quenched random 
patterns ($ (contained in J F ' )  one finds 

where b labels the replicas: b = 1, . . . , n, and n = @'/B. 
To obtain the free energy averaged over quenched $s one has to apply the replica trick 

again, this time in the usual way taking the limit of zero number of (new) replicas in the 
final results. For this kind of replica partition function Zk E ((2')) (where ((. . .)) denotes 
the averaging over the patterns, and k + 0) one gets 

Z k =  c / D J : < j  e ~ p ( - , ~ c ( J a - J " ) ' + B c c ~ ~ ~ a p b u ~ b  N N k  . 1 N k n  

( d l  &=ti  2Jo i < j  0=l i < j  ==I b=l 

(10) 
Hereaandblabelthetwotypesofreplicas: a = 1 ,  ..., k ( k +  O ) a n d b =  1, ..., n 
(n = B'/B). 

Standard calculations (see, for example, [7]) yield 

where 

is the replica free energy, where 
have intrcduced three standard replica order parameters: 
(i) the overlap with the 'condensing' pattem (number 1): 

= P / N  is the reduced number of patterns. Here we 

(ii) the spin-glass replica matrix 

(ii) and the replica matrix which yields the average value for non-condensing overlaps 
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Here (. . .) denotes the thermal averaging over the spins for fixed values of !he couplings, 
and L.. .] denotes the averaging over the couplings. 

In the replica-symmetric approximation one takes 
ab - qnly - q (a Pa') q$ = Q (b # b') 

m a b = m .  

rab - - r (a #a') r$ = R (b # b') 

Then from (12) for the replica-symmetric free energy one obtains 

The saddlepoint equations for the parameters q ,  Q, r, R and m are obtained in a standard 
way. Changing R - r + R, one gets 

>' J Dx (Cosh)" (Tanh) 
J Dx(Cosh)" 

Dx(Cosh)"flmh) 
= 1 Dz I Dx(Cosh)" 

where we have introduced the following notations: 
Cosh =cosh [ p ( m  + f i z  + f i x ) ]  

~anh = tanh [s(m + &Z -t- a x ) ]  

Note again that here n I p'fp is a finite parameter of the theory. 
The physical meaning of the order parmeters involved is in the following: 
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Note again that in the problem under consideration we have three types of averaging: (. . .) 
denotes the averaging over the 'fast' spin variables with the temperature T; [. . .] denotes 
the averaging over the 'slow' synaptic couplings with the temperature T', and finally ((. . .)) 
denotes the averaging over the quenched patterns. 

In what follows we are going to consider the region of temperatures T' such that n > 1, 
which Corresponds to T' < T. The idea is that if the temperature in the system of couplings 
is low enough, then the tendency of deepening the retrieval energy minima could be expected 
to dominate. The analysis of the saddlepoint equations (18)-(22) shows that in this case 
(at non-zero T) the capacity of the model increases. 

Consider first the limit case Jo --f ca. In this situation the subspace of Ji,s around the 
'Hebb point', (2), is effectively getting unconstrained. 

From (19) and (20) one finds that R + 00 and Q = 1 (C = 0). Then the integration 
over x in (21) and (22) recovers the usual Hopfield model saddle-point equations for the 
parameters q.  r and m [7] in which p is changed for np:  

Hence in this case the whole phase diagram of the model under consideration can be mapped 
from that of the Hopfield one hy changing p + np (see figure 1). In particular, the reaieval 
region (m # 0) is bounded by the critical l i e  

T,((Y) = n T c ~ ( ( Y )  (31) 

where Tcw(a) is the boundary of the retrieval region of the Hopfield model. Thus the 
r e ~ e v a l  region of the considered model increases with n, although the critical capacity at 
T = 0 remains unchanged. 

Similarly, the spin-glass phase transition line &(a), below which the order parameter 
q is getting non-zero is defined by the equation 

i"&) = n(1 + A). (32) 

Note, however, that although q = (([(a)12)) = 0 above T,((Y), the other order parameter 
Q = ( ( [ ( c ) ~ ] ) )  = 1 at all temperatures in the considered limit Jo + 00. Therefore the 
region above T (or) should be called 'paramagnetic' in a somewhat conditional sense. 

Let us consider now the limit T + 0 for arbitrary values of J , .  In thii case the 
calculations appear to be similar to those of Jo + ca. After integration over x in (20) one 
ge6 

(33) 

? 

Q = 1 -constant x exp ( - constant x 8') -? 1 . 
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0 -  U 0.138 

F i p  1. Phase diagramofthe model withn > 1 io the limit Jo + 00 

Then integrating over x in (21) and (274, and neglecting the terms - exp(-constant x p2)  
one recovers (28)-(30) again. It means that at T -+ 0 the storage capacity can be obtained 
from the results of the usual Hopfield model, where T should be changed for T / n :  

where ffcp(0) N 0.138, and CO N 0.18 is the same constant which appear in [7]. 

30 -+ 00 and T 4 0. Integration over J; in (10) yields 
There is another qualitative way to estimate the storage capacity for the h i t  cases 

(35) 
If p*Ji  >> 6, then the leading contribution in the summation over the us must be defined 

by the first term in the exponent with (1 /N  C j  U ? ~ U ; ~ ) *  = 1 which is its mavimum possible 
value. Taking into account this constraint one finds 

Thus, we arrive back at the usual Hopfield problem with ,9 -+ n p .  The condition for this 
reduction is pJ,’ >> 1. 

In conclusion, the main idea of this letter is to propose a simple statistical mechanical 
approach which would self-consistently describe both the training and the retrieval stages 
in neural networks. In this approach the dynamics of the synaptic (training) and the neural 
(retrieval) degrkes of freedom are supposed to take place at two widely separated time- 
scales, being io partial thermal equilibrium and having two different temperatures (7’’ and 
T correspondingly). In the particular model considered the space in which the synaptic 
couplings live has been constrained around the ‘Hebb point’, (2). 
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We have demonstrated that in the low synaptic temperature region T' < T in the l i t  
of quasi-unconstrained synaptic subspace Jo + 03, (S), the system is effectively reduced to 
the usual Hopfield model in which the spin temperature T is 'cooled down' to the synaptic 
temperature T'. Therefore, the phase diagram of the system in the plain (T, a) is given by 
the Hopfield one with rescaled temperature axis. 

The detailed consideration of the phase diagram for arbitrary values of T. T' and Jo, 
as well as stability analysis of the obtained replica-symmetric solutions will be published 
elsewhere [8]. 

Note finally that to model the statistical mechanics of the unlearning experiments [ I ,  21 
the present approach should be essentially modified. In the training algorithm considered 
here we were dealing only with the energy minima corresponding to the retrieval states. 
Taking the sign of E to be negative in (1) (as it should be in the unlearning) one would just 
make the retrieval worse. That is why the whole stage of training should be changed in 
such a way that it would deal with the spin-glass states. Besides, the sign of the synaptic 
temperature (and correspondingly the sign of the replica parameter n = T/T') should be 
taken as negative. 

The research described in this publication was made possible in part by the INTAS grant 
no 101-CT93-0027. and by grant no M5R000 from the International Science Foundation. 
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